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We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons
connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast
rise and decay. Depending on the parameters, the network displays transients which are short or exponentially
long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the
number of connections per neuron is large (~1000), this attractor is a cluster state with a short period. In
contrast, if the number of connections per neuron is small (~100), the attractor has complex dynamics and
very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed
as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous
or displays population oscillations. In the first case, the average firing rates and the variability of the single-
neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the
long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The
transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the
trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N). We further
show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in
this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed.
We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the

synaptic delay, provided that the network is sufficiently large.
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I. INTRODUCTION

Spike trains of cortical neurons recorded in vivo during
spontaneous as well as evoked periods of activity are highly
irregular [1-6]. The strong irregularity of neuronal dynamics
in vivo is also visible in intracellular traces which exhibit
large fluctuations in membrane potentials [7,8]. This con-
trasts with the nearly periodic trains of action potentials re-
corded in vitro in neurons stimulated with constant or weakly
noisy current (see, e.g., [9]).

In vivo irregular spiking in cortex is a nontrivial feature
because of the large number of afferents cortical neurons
receive. Indeed, assuming asynchronous firing of K>1 pr-
esynaptic afferents, the resulting temporal fluctuations in the
postsynaptic current (PSC) should be much smaller, by a
factor 1/VK, than the average current. Accordingly, since in
vitro neurons fire regularly in response to constant current
inputs, one would expect firing in vivo to be only weakly
irregular. A possible explanation of the observed variability
is to assume that in cortical networks excitatory and inhibi-
tory inputs nearly balance, so that their temporal fluctuations
are small compared to their means taken separately but are as
large as the average total synaptic input [10-14]. In such a
state the neural activity is driven mostly by the temporal
fluctuation in the synaptic input rather than by their means.
Hence the neural firing is irregular. The “balance of excita-
tion and inhibition” can be rigorously defined in the thermo-
dynamic limit in which the number of excitatory neurons,
Ng, and the number of inhibitory neurons, N;, goes to infin-
ity. As shown in [11,12], if the connectivity K is large but
sparse, i.e., | <<K<Ng,N; and the coupling strength is

1539-3755/2009/79(3)/031909(13)

031909-1

PACS number(s): 87.19.1j, 84.35.+1, 05.45.Xt

scaled proportionally to 1/ VK, balanced states emerge from
the collective dynamics of the network without any fine tun-
ing of parameters. Moreover, balanced states are largely in-
dependent of single-cell intrinsic properties. In fact they can
be equally found in networks of binary neurons [11,12],
integrate-and-fire neurons [13—16], as well as for more real-
istic conductance-based dynamics [17]. Note that balanced
states occur not only in excitatory-inhibitory networks, but
also emerge in strongly connected purely inhibitory networks
receiving strong external inputs.

An approximate self-consistent mean-field theory can be
developed to study the asynchronous activity in networks of
integrate-and-fire neurons in the thermodynamic limit. This
theory assumes that the connectivity matrix of the neurons is
random and sparse and that the interactions are delayed and
of brief duration (S-function synaptic currents) [13,14]. This
theory applies to the balanced excitation-inhibition regime
and predicts accurately the distribution of the firing rates of
the neurons as well as the coefficient of variation (CV) of
their interspike intervals (ISIs). It also predicts the instabili-
ties of the balanced state as function of the network param-
eters.

In contrast to the dynamics of randomly connected neu-
rons, the dynamics of fully connected networks are in gen-
eral periodic or weakly irregular. Depending on the nature of
the interactions (excitatory or inhibitory), the synaptic dy-
namics (delay, rise, and decay time), and heterogeneities in
the external inputs, these networks display diverse patterns
of activity, e.g., full synchrony, cluster states, or asynchro-
nous states (see, e.g., [18]). In particular, the patterns of syn-
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chrony of inhibitory leaky integrate-and-fire (LIF) networks
with all-to-all connectivity have been studied extensively
[19-21]. When there is no delay in the synaptic transmission
and the time course of the postsynaptic current is instanta-
neous, the network converges to a periodic splay state
[22-24]. When the interactions are noninstantaneous, the
network displays stable n-cluster states in a broad region of
parameters. In these states the network splits into n groups of
neurons. Within each group, neurons fire in synchrony
whereas a nonzero phase shift exists between groups. In par-
ticular, a one-cluster state corresponds to full synchrony. The
typical number of clusters in such states increases linearly
with the inverse of the delay [21]. In all these states the
neurons fire periodically or close to periodically, unless
strong noise is present in the external input [19].

To understand better how randomness in the connectivity
induces irregular spiking, Zillmer et al. [22] recently inves-
tigated the dynamics of finite-size networks of inhibitory
integrate-and-fire neurons with weakly diluted connectivity
and instantaneous S-function synaptic interactions (no de-
lay). The networks they considered had small to moderate
sizes (up to N=200 neurons). They found that at sufficiently
large time the dynamics always reaches a state of periodic
activity in which neurons fire in a phase-locked manner.
However, the transient dynamics as well as the time needed
to reach these states depend on the coupling strength (nor-
malized to N). For weak coupling the transients are short,
with a duration of O(N). In contrast, for sufficiently strong
coupling the convergence to the periodic dynamics can be
extremely slow with a transient duration that is exponentially
large in the network size. They also found that the dynamics
during these long transient are irregular but nonchaotic since
the maximum Lyapunov exponent (LE) is always negative.
In fact, they showed that the transient dynamics is reminis-
cent of those observed in coupled map lattices in the regime
of stable chaos (see e.g., [25]). Similar results were obtained
by Jahnke et al. [26] for delayed S-function synapses and
substantially more diluted connectivity than in [22]. They
also provided an analytical argument showing the stability of
any dynamical trajectory.

The results of Zillmer et al. and Jahnke et al. suggest that,
depending on the time scale of the observation, finite-size
networks of inhibitory randomly connected neurons behave
either like infinitely large sparsely connected networks or
like fully connected networks. They also suggest that when
the size of the network is increased the thermodynamic limit
behavior is reached through the divergence of the transient
behavior. Our goal in the present paper is to clarify further
the relationship between the finite-size transient dynamics of
sparsely connected networks and their dynamics in the ther-
modynamic limit. We also aim at investigating whether truly
chaotic states can also be observed in such networks. We
define the model we investigate and we summarize previous
findings regarding its dynamical properties in Sec. II. In Sec.
III the different dynamical regimes exhibited by the model
when the connectivity is large (~1000 synapses per neuron)
and the neurons interact via S-function synapses are de-
scribed. Transients with duration exponentially growing with
the system size during which the neurons fire irregularly be-
fore the dynamics collapses to periodic states are studied in
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Sec. IV. Section V shows that when the connectivity is small
(~100) the period of the dynamics to which the long tran-
sients collapse is exponentially large in the network size. In
Sec. VI we show that networks with synapses with nonin-
stantaneous decay may exhibit chaotic states, characterized
by positive Lyapunov exponents, if the network is suffi-
ciently large. We conclude by summarizing the results and
raising some open issues.

II. DEFINITION OF THE MODEL AND MEAN-FIELD
APPROACH

A. Model

We consider a network on N LIF neurons, coupled via
inhibitory interactions. The membrane potentials V;,i
=1,...,N satisfy the equation

V=l = Vi+ [ (1)

supplemented by the condition that whenever V; reaches a
threshold V,, the neuron fires an action potential and V; is
reset to V,. In Eq. (1) 7is the membrane time constant of the
neuron, assumed to be identical for all the cells, I, is a
time-independent homogeneous background external current
representing inputs from neurons not explicitly described in
the model, and I;°° is the synaptic current that neuron i re-
ceives from other neurons in the network due to the recurrent
interactions (I, and I°° are normalized to the neuronal
membrane resistance). The recurrent current is given by

N
Jii
I = TE 7;2 alt— tg»m) -D), (2)
j=1 m ’

where a(t) describes the time course of the PSC induced by
a single presynaptic spike and t;m) is the mth spike fired by
neuron j. The function «(z) is normalized so that [a(r)dt
=1. The synaptic delay is denoted by D. The network con-
nectivity matrix J;; is drawn randomly under the constraint
that neurons receive exactly K inputs. We set J;;=J whenever
a synaptic connection exists from neuron j to neuron i, and
J;;=0 otherwise.

The present study focuses on the case of inhibitory inter-
actions, i.e., J <0, and we study the dynamics of the network
as a function of /. >V,, J, K, and N. The delay is taken to be
D=2 ms, unless specified otherwise. The PSC time course is
given by a(r)=8(r) (called 5-PSC throughout the paper) ex-
cept in Sec. VI where we consider the more realistic form

0O(1)

Tqg— Ty

a(t) — (e—f/Td _ e—t/rr) (3)
that depends on the rise time 7, and the decay time 7, and
where O(r) denotes the Heaviside function. Throughout the
study we assume fixed single-neuron parameters: 7=20 ms,
V,=20 mV, and V,=10 mV (see, e.g., [9]).

As outlined in Appendix A, the dynamics of the network
[Egs. (1) and (2)] are equivalently described by a discrete-
time map. Iterating numerically this map provides us with an
efficient way to investigate the dynamical properties of large
networks with up to N=10 000 neurons and connectivity as
large as K=1000.
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In the following, Tig; denotes the ISI of a single neuron
and fg; the time interval between two successive action po-
tentials in the network. States in which neurons fire periodi-
cally can be described in terms of a set of phase variables,
¢;(1), defined as the duration elapsed at time ¢ since the last
spike fired by neuron i, normalized to the period of firing.

B. Mean-field approach

Under the assumptions that neurons fire as Poisson pro-
cesses, that individual connection strengths are small com-
pared to the threshold, and that PSCs have ¢ functions pro-
file, the synaptic inputs to the neurons can be modeled as
white noise with a mean and a variance determined self-
consistently by the dynamics of the network [13]. In this
mean-field approach, the dynamics of the membrane poten-
tial of individual neurons follow a diffusion process,

V=1~ Vi+ 7JR(t— D) + 7/ @g(r), (4)

where (&(r)&(t'))=8(t—1') and R(¢) is the instantaneous net-
work activity (number of neurons firing between ¢ and ¢
+At, divided by NA¢, in the small Az limit). Since fluctua-
tions become uncorrelated from neuron to neuron when
K/N—0, Eq. (4) can be transformed into a Fokker-Planck
equation describing the temporal evolution of the probability
distribution function of the membrane potentials. The mem-
brane potential distribution in the asynchronous state of the
network is the stationary solution of this Fokker-Planck
equation. In this state the population activity is constant in
time and single cells fire in a highly irregular fashion. The
mean-field equations allow one to compute the average firing
rate of the neurons and CV of their spike interval distribu-
tion. Furthermore, the stability of the stationary solution and
the conditions for the emergence of collective oscillations
can be determined by studying the Fokker-Planck operator
linearized around this solution. One finds that when the in-
hibitory coupling is below a critical value, the asynchronous
state is stable. When the inhibitory coupling is above this
critical value the network goes to a synchronous state in
which population oscillation emerges, while single cells keep
firing in a highly irregular fashion. The critical coupling
strength where the instability occurs depends on the delay D
as well as on the external drive [13]. The population oscilla-
tions are induced by the interplay between the negative feed-
back due to the recurrent interactions and the delay in its
transmission. It can be shown that the period of the emerging
collective oscillation is ~D when D<7,,.

Note that the mean-field approach assumes an infinitely
large network. Moreover, in the absence of external noise [as
in Eq. (1)] the noise in the synaptic input to the neurons is a
consequence of the random sparse connectivity and it is gen-
erated in a self-consistent fashion by the irregular dynamics
of the network. Hence, this noise disappears if the system
settles on a periodic orbit in which single neurons have regu-
lar periodic firing patterns.
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III. DYNAMICS OF DILUTED NETWORKS
WITH LARGE K=1000

In this section we present results obtained in numerical
simulations of the LIF inhibitory network [Egs. (1)—(3)] with
N=5000,K=1000. The postsynaptic currents are modeled as
a delayed 6 function. We study the dynamics of the network
as a function of the external drive /., and the strength of the
couplings J. All the numerical simulations described in this
section have a duration #,,,, <10 min.

A. Firing patterns in simulations with random initial
conditions for the membrane potentials

For initial conditions of V; drawn independently at ran-
dom from a uniform distribution on [V,, V,], our simulations
show two qualitatively different regimes, depending on the
values of the external current /., and the coupling strength J.
When I, is larger than some critical value I,.(J,D), which
increases with J and decreases with D, the network settles
after a rapid transient, typically shorter than 2 s, in a state of
periodic firing with a period T equal to the single-neuron ISI,
Tis1- In this state the neurons are arranged in smeared clusters
[27] with all the neurons in a given cluster firing within a
time window of a size of the order of D [see the inset of Fig.
2(b)]. The number of clusters depends on the initial condi-
tions and varies in a range that depends on the delay D. For
instance, for D=2 ms we observe states with two to five
clusters, depending on the initial condition.

In contrast, the neurons fire in a nonperiodic and irregular
fashion throughout the simulation when I, <1.(J,D). More
precisely, in agreement with the predictions of the mean-field
theory sketched above, we find two types of irregular states.
For a sufficiently small drive, I, <I,(J,D), the network is
in an asynchronous state, whereas for [ (J,D)<I.
<I.J,D) the population activity is synchronous. Synchro-
nous oscillations are for instance observed for /.,,=21 mV,
J==50 mV, and D=2 ms. This is illustrated in Fig. 1(a)
where the autocorrelation (AC) of the population-averaged
neuronal firing rate R(z) is plotted. This figure shows that the
period of the oscillations is =4D in agreement with the
mean-field prediction [13]. The damping in the oscillations is
a finite-size effect: the damping time constant increases by a
factor of =~1.5 if the network size is doubled [triangles in
Fig. 1(a)]. These oscillations occur at the population level,
while the single-neuron activity is highly irregular. The dis-
tribution of the single-neuron ISIs depends on both /., and J,
and the average CV increases with J and decreases with /..
For I, and J such that the network is well in the synchro-
nous irregular region, the ISI distribution is broad but dis-
plays multiple peaks that are integer multiples of the popu-
lation oscillation period. This is shown in Fig. 1(b) for I,
=25 mV and J=-50 mV. In contrast, for a lower current
value, I.,=22 mV, the peaks in the ISI distribution are no
longer present. At large ISI the distribution displays an ex-
ponential decay. Although the network activity displays syn-
chronous collective oscillations for these parameters, their
amplitude is too small for the multiple peaks to appear in the
IST distribution.
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FIG. 1. (Color online) (a) The autocorrelation of the activity normalized to the time averaged activity of the network [R(r)] for N
=5000 (blue bullets) and N=10 000 (red triangles); I.,,=21 mV,J/=-50 mV,K=1000. The inset shows a snapshot of the activity for N
=5000. (b) The ISI distribution for N=5000, K=1000, J=—50 mV, I,,=21 mV (blue dashed line), and I.,,=25 mV (black solid line).

B. Dynamics of the network for initial conditions
close to a cluster state

In contrast to the behavior found in simulations with ran-
dom initial conditions, we find that if the network is initial-
ized close to a cluster configuration it is always driven to-
ward a smeared cluster state. For example, for the same
parameters as in Fig. 1(a), the network is driven toward a
smeared two-cluster state when it is initialized near such a
state, even though for these parameters random conditions
lead to irregular firing. However, sufficiently strong pertur-
bation of the network, settled in such smeared two-cluster
states, drive it away toward an irregular firing state. This
happens for instance in the simulations depicted in Fig. 2,
where after r=0.6 s the state of the network is perturbed
each time a neuron fires by adding to the membrane poten-
tials of all neurons an independent and identically distributed
random number chosen according to a uniform distribution
of width 1.7X10°% mV. These perturbations are much
smaller than the typical potential difference of neurons close
to the threshold ~10~* mV, such that their effect is similar

Lol

10°E
0

to that of time-continuous noise. We checked that, once the
system has reached the irregular state, it remains there (for
times up to f,,x=10 min) even after the noise has been
switched off. A similar behavior is observed for different
parameter values, regardless of whether the irregular state is
synchronous or asynchronous. Thus, the network displays
bistability between regular periodic smeared cluster states
and synchronous or asynchronous irregular firing.

The phase diagram plotted in Fig. 3 summarizes the re-
sults we have described in this section. In the gray area,
confined by the numerically obtained border (full circles),
the network displays periodic or irregular firing state, de-
pending on initial conditions. The coefficient of variation
(Cy) of single-neuron ISI in the irregular state increases as
the external current is reduced for fixed J, thus assuming
values Cy,>0.8 below the dashed line in the phase diagram.
Finally, the solid red line corresponds to the transition from
asynchronous irregular firing to synchronous irregular firing
as predicted by mean-field theory, in good agreement with
our simulation results.

5000

4000

3000

2000

1000 i

(b)

FIG. 2. Transition from cluster to irregular dynamics induced by external perturbations. N=5000,K=1000,/.,,=21 mV,/=-50 mV.
The network has been initialized in a two-cluster periodic state. For 0 <7<<0.6 s the dynamics was perturbed as described in the text. The
sudden transition to irregular dynamics is clearly visible. (a) The network ISI, rg, vs time. (b) Raster plot of the network activity. Dots
represent the firing of the neurons labeled by the index i. The transition to the irregular dynamics when the accumulated perturbations exceed
a certain threshold is clearly visible. The inset shows a zoom of a smeared cluster.
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FIG. 3. (Color online) Phase diagram of the network for N
=5000,K=1000. The domain in which stable periodic and irregular
dynamics coexist is indicated in gray. See details in text.

We have treated the delay here as a fixed parameter (2
ms). Increasing the delay has the following effects: the re-
gion in which irregular transients are observed shrinks; the
region in which this transient dynamics is asynchronous also
shrinks, as predicted by mean-field theory [13]. Further, for
long enough delays, the periodic state is always a one-cluster
state, consistent with [21].

IV. LONG TRANSIENTS TO PERIODIC STATES IN
FINITE NETWORKS

A. Irregular firing is a transient state but is “stationary”
over long times

In this section we show that the irregular firing states,
found in our simulations of the network with N=35000 neu-
rons, are in fact quasistationary states in which the dynamics,
started from random initial conditions, remain transient for a
duration which is exponentially large in N. For N=5000 the
transient duration is on an “astronomical” time scale. How-
ever, if the system size is not that large, an abrupt switch
from irregular firing to a smeared cluster state can actually be
observed after a long transient.

This switching phenomenon is demonstrated in Fig. 4(a),
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for N=1650, and values of J and I, for which the mean-
field theory predicts a stable asynchronous state in the ther-
modynamic limit. Initialized with random initial conditions,
the network remains in the irregular state until 7=~463 s,
where it suddenly switches to a two-cluster state with peri-
odic firing. Remarkably, until the abrupt switching, the tran-
sient exhibits all the characteristics of a stationary state. To
show this, we computed the ISI distribution over sliding win-
dows of O(10 000) firing events. This allows us to estimate a
time-dependent average ISI, (Tig)(7), as well as a time-
dependent coefficient of variation Cy(z). The results, plotted
in Fig. 4(b), show that both quantities remain essentially
constant during the transient until the moment of the switch-
ing to the periodic cluster state, where suddenly
Cy(1) —0,({Ts(1) — T. Thus, one can meaningfully speak of
a quasistationary irregular dynamical state that coexists with
periodic cluster states. Remarkably, the observed irregular
transients resemble the stationary states of the network, pre-
dicted by the mean-field theory in the sparse connectivity
limit K/N— 0, not only qualitatively but also quantitatively.
For instance, in the case depicted in Fig. 4(b), the average
Tis1 and the Cy, of the ISI distribution are close to the values
of 0.67 s and 0.85, respectively, predicted by the mean-field
theory for the sparsely connected network (K/N<1) with
the same synaptic strength and current values, although here
K/N=0.61. As a matter of fact, the small deviation of the
numerical Tig; and Cy from the mean-field results can be
partly explained by a finite-size effect due to the usage of
sliding windows of finite width for the computation of these
quantities.

In order to compute the transient duration Ty, an algo-
rithm has been employed that searches for the first repetition
(within a reasonable resolution €< =10"'") of the mem-
brane potential values: max,|V(Ty+T)-V{(T,)|<e, where i
=1,...,N. (cf. [22]). The results obtained with a fixed num-
ber of connections, K=1000, various sizes of the network,
and several values of /., and J are summarized in Fig. 5. In
particular, the circles correspond to the same values of I,
and J as in Fig. 4 and network sizes in the range N
=1100-1650. These results indicate clearly that the transient
diverges exponentially with N. We also computed the period
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FIG. 4. (Color online) Collapse to periodic two-cluster state for K=1000,N=1650,/=-50 mV,I.,=21 mV. (a) Raster plot. (b) The
single-neuron ISI averaged over all the neurons, (Tg), and the average Cy, as function of time during the simulation depicted in (a). The
solid blue lines indicate the mean-field prediction for the irregular state.
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FIG. 5. The average transient duration vs N for K=1000.
Circles: J=-50 mV,l,=21 mV, squares: J=-50 mV, /.,
=25 mV, diamonds: J=-150 mV,/,, ;=26 mV, and triangles:
J=-200 mV,[,=21 mV. T, is averaged over ten random
network configurations and initial conditions of V;, except for
J=-50 mV,/[,,,=25 mV for which the average is over four con-
figurations and initial conditions.

T of the firing of the neurons after the network has switched
to the cluster state. In contrast to the transient duration, 7'
coincides with the single-neuron ISI of the periodic attractor
and thus depends only weakly on N with values close to 7'
~ 100 ms (figure not shown).

B. Dynamical stability of irregular firing states

To analyze further the irregular dynamics we computed
the largest Lyapunov exponent A of the very long transient
dynamics as explained in Appendix B. Note that the zero
Lyapunov exponent corresponding to perturbations oriented
along the trajectory itself has been removed by the adoption
of the discrete-time mapping.

The maximum Lyapunov exponent for K=1000 and /I
=21 mV is plotted in Fig. 6(a) as a function of J for N
=5000 (triangles) and N=1650 (squares). These results show
that A remains negative in the domain explored, including
the case J=-50 that is considered in Figs. 2 and 4. Note also
that the Cy, of the single-neuron ISIs [black points in
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Fig. 6(a)] increases monotonically with J and exceeds 0.8 for
J<-40 mV. Quite surprisingly, Cy, and hence the irregular-
ity of the spike trains, increases with decreasing LE for J
>-90 mV.

These results show that the quasistationary state observed
during the transient is stable vis-a-vis infinitesimally small
perturbations. We tested subsequently the stability of this
state with respect to perturbations of the potentials on the
order of ~N~! by measuring the distance

N
1
Dp(t) = NE VAGERZ0]
i=1

between the trajectory Vi(z),i=1,...,N of the system starting
with some initial conditions and a perturbed one, Vl-’ (1), ob-
tained from the same initial conditions except that the indices
of the two neurons closest to threshold have been swapped.
We found that in roughly 50% of the cases such perturba-
tions that affect initially only two neurons, eventually spread
over the whole network, leading the system to a state of
irregular firing that is locally extremely different from the
unperturbed one. An example is shown in Fig. 6(b), where
the distance Dp(r) is plotted after a swap of two neurons at
t=0. It shows how linear stability initially attempts to sup-
press the perturbation (note the logarithmic scale of the ver-
tical axis) but that eventually Dp(7) increases and converges
to Dp=0.76 mV. Interestingly, this value is very close to
the average distance between two uncorrelated network
states, Dp yrp=0.75 mV, computed analytically from the sta-
tionary distribution of membrane potentials in the framework
of the mean-field theory (see Appendix C). We observe simi-
lar behavior for other finite perturbations on the order of
~N7L.

The transient quasistationary and locally stable noncha-
otic states of irregular firing displayed by our network are
reminiscent of stable chaotic states [22,28] observed in
coupled map lattices in which irregular local dynamics per-
sist over times that are exponential or supraexponential in the
size of the network. A characteristic property of stable cha-
otic states is the fact that they are stable against infinitesi-
mally small perturbation on the dynamical variables but un-

r T T T I
100? NS N NIV VNY N\ S
S0’ E
é L 3
&, T
Q107 ¥
10° 4
107F 4
| | | | | 1 |

0 40 80 120 160 200 240

(b) ¢ (ms)

FIG. 6. (Color online) Transient dynamics for K=1000,/.,,=21 mV. (a) The average Cy of single-neuron ISIs (circles, left ordinate) and
the Lyapunov exponent (right ordinate, blue squares: N=1650 and blue triangles: N=5000) are plotted vs J. The solid line shows the
mean-field prediction. (b) Distance vs time after a finite perturbation at t=0; J=—50 mV. The solid line shows the mean-field prediction.
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FIG. 7. (Color online) Transitions from irregular state to cluster states in a network with N=1650,K=1000,/=-50 mV,/,,=21 mV. (a)
Two-dimensional delay plot of the activity during the convergence to a periodic two-cluster state. (b) The distribution of transient durations
T, computed for 1000 different random initial conditions. The solid red line shows an exponential fit.

stable against perturbations which are small but finite, on the
order of 1/N. Consequently, the dynamics in a stable chaotic
state look very irregular although the Lyapunov spectrum
computed on the time scale of the persistence of the state is
negative.

C. Properties of the transient termination

In the cluster states, which the network reaches at very
long time, the activity consists of short temporal windows in
which large fractions of neurons fire almost simultaneously
separated by long time intervals during which the network is
quiescent. As a result, the temporal modulation of the aver-
aged firing rate R(r) is large, with instantaneous frequencies
reaching values of several hundreds of Hz. In contrast, dur-
ing the irregular transient state the temporal modulations of
the activity have a small amplitude. These temporal fluctua-
tions of the activity are partly due to a finite-size noise that,
according to the mean-field theory, has a variance on the
order of 7~ 1/yN [13]. Subsequently, although these fluc-
tuations are small and in fact vanish in the thermodynamic
limit, their effects in a large but finite network can accumu-
late over sufficiently long time to drive the network away
from the irregular state. When the accumulated effect of #(z)
exceeds a certain threshold F, the network may reach the
basin of attraction of a periodic cluster state, whereupon it
collapses rapidly to that state. The time this process takes on
average corresponds to the average transient duration (7).
Note that the finite-size noise #(¢) is self-generated by the
dynamics in the irregular state, and that once the network has
escaped from this state, the fluctuations vanish. Hence the
transition between the irregular state and the cluster states is
strongly asymmetric: once the network has switched to the
latter state it stays there.

This qualitative description of the escape process is sup-
ported by the results depicted in Fig. 7. The delay plot in Fig.
7(a) can be seen as an attractor reconstruction of a two-
dimensional activity dynamics (amplitude and phase). It
shows the qualitative difference between transient and peri-
odic dynamics with respect to the existence of an internally
generated noise. This suggests that the transition from tran-
sient irregular states to a periodic attractor can be viewed as

a stochastic escape time problem, with a barrier ' and a
noise n~1/ VN. In the weak-noise limit the escape time is
expected to grow exponentially [29,30], ie., (Ty)
~exp(aN). This argumentation qualitatively explains the ob-
served divergence with the network size of the transient du-
ration, averaged over random initial conditions (see Fig. 5).
It also predicts an exponential distribution of the transient
durations. We have checked the latter for a network of size
N=1650, for which the periodic orbits are still numerically
accessible and the distribution of transient durations can be
obtained. The results depicted in Fig. 7(b) show that the pre-
diction is indeed verified. The theoretical determination of
the threshold F and the exponent & would involve a nonlin-
ear mean-field analysis of finite-size effects, which is beyond
the scope of this paper.

V. DEPENDENCE OF THE ASYMPTOTIC ATTRACTORS
AND TRANSIENT DURATIONS ON THE NUMBER
OF CONNECTIONS PER NEURON

The results we have presented so far concern networks
with the same number of connections per neurons, K=1000.
We now discuss, without intending to be exhaustive, what
happens if one changes K.

Our numerical simulations reveal that long transients are
observed also for small values of K~ O(10). However,
which such small values of K, not only the transients but also
the period of the attractor to which the network finally col-
lapses have a very long duration. This is shown in Fig. 8(a)
for different values of K and N. In fact, we find the period of
the attractor and the transient duration to be of the same
order, i.e., both increase exponentially as functions of N. At
some critical value, K=K.(N), a transition occurs between
attractors with long periodic orbit and attractors with short
periods ~100 ms, with the latter being almost insensitive to
N and K [see Fig. 8(b)].

The long periodic orbits for small K exhibit complex dy-
namics which are indistinguishable from the transient state
on short time scales. This is depicted in Fig. 9(a). Further
evidence is given by the time-dependent Cy, [see Fig. 9(b)] of
a single neuron (different neurons exhibit similar, but not
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FIG. 8. (Color online) Network with small number of connections; J=-50 mV,I.,,=21 mV. (a) The average period of the asymptotic
attractor vs N/K for K=70 (empty circles), K=100 (full squares), and K=130 (diamonds). (b) The period of the attractor, averaged over ten
random network realizations and initial conditions as function of K for N=190 (black circles), N=200 (red squares), N=210 (blue triangles),
and N=220 (green diamonds). For K=K_(N), the period collapses to T=134 ms. T has been averaged over ten random network realizations

and initial distributions of the V;.

equal, IST patterns) that stays close to 0.8 during transient
and periodic dynamics. Note that here Cy, of the ISI distribu-
tion fluctuates around the same value during the long tran-
sient and on the asymptotic periodic attractor. This is in con-
trast with the observation for K>K,. (see Fig. 4).
Interestingly, in this situation the mean and Cy of the ISI
distribution are close to the mean-field theory prediction,
during the transient and on the periodic states.

We have performed numerical simulations to estimate the
average transient durations for various values of K and N.
The results are summarized in Fig. 10(a), where the isolines
of the transient duration are displayed in the K-N plane. In
this plane, constant dilutions (Ko« N) correspond to straight
lines with slopes larger than unity. The two regimes for small
and large K are reflected in the behavior of the isolines. For
small K the isolines approach the diagonal, N=K, when K is
increased, thereby reducing their mutual distances. For a cer-
tain number of connections, K, that depends on the re-
spective network size N, this behavior is reversed and the
isolines start to depart from the diagonal.

Increasing N at a fixed K gives rise to exponentially in-
creasing transients everywhere in the K-N plane, with an

3
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t(s)
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1900 2000

(@)

exponent that depends on K. For large K and N the isolines
bend upwards with local slopes larger than 1 (see inset of
Fig. 10). This implies that the exponentially large transient
durations depend on N and K via B(K)N/K, where B(K)
depends weakly on K.

Consider now a straight line in the K-N plane with N
=akK, a>1. For small values of K this line crosses the iso-
lines, which is tantamount to exponentially increasing tran-
sients. However, because the isolines bend upward for large
K, the line N=aK finally crosses the isolines in the opposite
direction, i.e., the transients decay for K> 1. Thus, the tran-
sient duration assumes a maximum at K,,, which is demon-
strated in Fig. 10(b). Our results indicate that the value K,
at which T}, assumes a maximum, is very close to the value
K. where the transition between long and short periodic at-
tractors occurs. A possible reason for the decay of T, for
large K is the decrease in the size of the fluctuations of the
synaptic inputs to the neurons, which for N>1 scale as
~1/VK [cf. Eq. (4)].

It would be interesting to characterize the transition which
occurs at K=K (N) in more detail, with the focus on its be-
havior at large N. For instance, our results do not allow us to

1
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FIG. 9. Periodic attractor with a very long period for K=100,N=130. Other parameters are J=—50 mV,I.,=21 mV. (a) The ISI of a
sample neuron vs time on the long periodic orbit. The period is 7= 103 s. (b) The Cy of the single-neuron ISIs vs time (cf. Fig. 4). The

transition to the periodic dynamics is marked by the arrow.
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FIG. 10. (Color online) (a) Isolines of transient durations in the N-K plane for J=-50 mV,I.,,=21 mV. In the inset the range of K and
N has been expanded. Dotted line: K=N. (b) The average transient duration vs K for N=1.67K (blue dashed line), N=1.43K (black

dotted-dashed line), and N=1.15K (red solid line).

exclude the possibility that K.(N) for N—o saturates at a
finite value. Unfortunately, the necessary computational ef-
fort is formidable due to the exponentially long time scales
involved.

VI. DYNAMICS WITH POSTSYNAPTIC CURRENTS
OF FINITE WIDTH

A. Long irregular transients

For PSCs with finite rise and decay times [see Eq. (3)],
the dynamics can again be mapped onto a discrete-time map,
analogous to the procedure for 5-PSCs. However, the inter-
spike interval fig(n) is now given by a transcendental equa-
tion that has to be solved iteratively at each integration step.
This slows down the numerical computations considerably,
and hence we restrict the numerical analysis to (presumably)
significant samples of the parameter space. Regarding the
shape of the PSC we considered two cases: (i) a symmetric
shape, 7,=7,=7,, and (ii) a sharp rise and slow decay (7,
=0, 7,>0). We found that for both time courses the behavior
resembles the one observed for 5-PSCs. Indeed, the simula-
tions confirm the existence of periodic cluster states as well
as transients exponentially long in the size of the network.

During the transients the dynamics is highly irregular, with
values of the CV close to the ones we found for the 6-PSC
limit.

We illustrate these conclusions with specific examples in
Fig. 11. In Fig. 11(a) the average transient duration for 7,
=0.5 ms and D=2 ms is compared with the case of
o-function PSC. Apart from a shift of the curve to higher
values of N, the duration grows exponentially with N with
roughly the same exponent for both cases. The results de-
picted in Fig. 11(b) confirm that the single-neuron IST statis-
tics is almost unaffected by the presence of a finite time
constant 7,=0.5 ms (compare solid black line and black
circles). Also the LE, shown in the same figure, stays dis-
tinctly negative, with some positive (upward) shift compared
to the &5-PSC case. The periodic dynamics that is reached
after the transient is again characterized by cluster states.
Thus, for short PSCs with 7, <D we recover the dynamical
regimes as described in Sec. IV.

B. Chaotic dynamics with broad PSCs and short delays

Remarkably, and in contrast with the case of 6-PSCs, we
also observed a truly chaotic region with positive LE when
the PSC time constant is large enough. We present here the
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FIG. 11. (Color online) Irregular long transients for PSCs with finite width. Parameters are K=1000,/=-50 mV,l,,,=21 mV,7,
=0.5 ms. The solid lines show the 5-PSC case. (a) The transient duration averaged over five random initial conditions for different values
of N (blue squares). (b) Population-averaged Cy of the single-neuron ISIs (left ordinate, circles) and the largest Lyapunov exponent (right

ordinate, blue triangles) vs J for N=4000.
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FIG. 12. (Color online) Chaotic dynamics with finite-width PSCs. Parameters are K=1000,/=-50 mV,/,,=21 mV. (a) The largest
Lyapunov exponent vs N for 7,=8 ms and D=1 ms. (b) Diagram showing the chaotic and nonchaotic phases for N=4000 (black circles)

and N=4500 (blue squares).

results for zero rise time, 7,=0, and different delays D
=2 ms. Similar results are found for symmetric PSCs, 7,
=T,

As shown in Fig. 12(a), for 7,=8 ms and D=1 ms the
largest Lyapunov exponent A, increases with growing sys-
tem size. It becomes positive when N=2500. We have nu-
merically estimated A; for different values of the decay time
constant 7, and delay D. We found that it is positive in a
broad range of these parameters. This is depicted in a phase
diagram in Fig. 12(b) for two values of N. The border corre-
sponding to A;=0 shifts upward when N is increased, thus
enlarging the region where the dynamics is chaotic. Simula-
tions performed for network sizes up to N=6000 suggest that
the transition location converges to some limiting line in the
large N limit.

The variation of the first three Lyapunov exponents along
a vertical cut through the 7,-D plane at 7,=8 ms is plotted in
Fig. 13. The results show that the Lyapunov spectrum starts
to expand and to increase toward higher values when the
delay is decreased beyond D=D_,~3 ms. Upon further re-
duction in D, the exponents A, A, successively cross zero to
become positive. We tested that the Lyapunov spectrum does
not degenerate for D>3 ms; however, the separation of
nearby exponents is small and on the order of N~!. This
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FIG. 13. (Color online) The three largest Lyapunov exponents
A, (squares), A, (red diamonds), and A; (green triangles) vs
delay D for N=4000. Parameters are K=1000,/=-50 mV, /.,
=21 mV,7,;=8 ms.

suggests that there is a qualitative change in the dynamics
before the onset of chaos, namely, when the spectrum starts
to expand at D,.. Indeed, we find that D, decreases and finally
vanishes when 7, is decreased, i.e., the expansion of the
spectrum is not present in the 5-PSC limit.

These results are consistent with the fact that we did not
observe true chaos with 6 PSCs. In fact, chaos appears when
the time constant of the postsynaptic current is increased
beyond a critical value that depends on the delay D. The
emergence of a chaotic region requires also a sufficiently
large degree of connectivity. For instance, tests for varying
numbers of connections per neuron revealed that, for the
parameters of Fig. 12(b), the chaotic region disappears when
K falls below K <400.

Despite the observed chaotic dynamics when starting
from random initial conditions, there might still exist stable
periodic orbits with a finite basin of attraction. Indeed, we
observe the simple one cluster (all neurons fire simulta-
neously) to remain stable. On the other hand, we find that the
two-cluster state always destabilizes upon entering the cha-
otic region. We never observed the chaotic state to collapse
on a periodic solution. However, we cannot exclude this pos-
sibility on the basis of our numerical simulations because the
time scale over which a collapse may in fact occur can be
exceedingly long.

VII. CONCLUSION

In this paper, we have reconsidered the dynamics of ran-
domly connected integrate-and-fire neurons coupled through
inhibition, with the focus on the transient dynamics when the
size of the networks is finite. When the decay of the synapses
following a spike is much faster than the synaptic delay and
the number of connections per neurons is large, the network
dynamics converge rapidly to periodic cluster states if the
synaptic coupling is weak. In contrast, when the coupling is
strong the transient dynamics are exponentially long in the
network size and exhibit stable chaos. During the transients,
the dynamics are locally stable with respect to sufficiently
small perturbations, as shown by previous studies in similar
networks [22,26]. However, they appear to be “chaotic” in
the sense that the firing patterns are highly irregular. This
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irregularity is intimately connected with a high sensitivity of
the dynamics against finite perturbations. In previous works
[22,25] strong nonlinearities in the phase space have been
identified as a necessary, but not sufficient, condition for the
emergence of this type of chaotic dynamics. In the present
case, the combined effect of the nonlinearity introduced by
the reset of the membrane potential at the threshold and the
asymmetric interactions due to the random connectivity
gives rise to configurations that are sensitive against finite
perturbations. However, an analytical derivation of the pa-
rameter values, where the effect of the nonlinearities is suf-
ficiently strong to sustain the irregular transient dynamics is
still an open problem. Note that convergence to a periodic
state was shown analytically by Jin [31] in a network without
synaptic delays. Further, it should be noticed that exponen-
tially long transients have also been observed in diluted ex-
citatory networks [32].

We showed that, during the long transients, the firing rate
and the irregular firing patterns are as predicted by the mean-
field theory of the asynchronous state in infinitely large
sparse networks [13]. As the synaptic delay is varied, the
asynchronous transient dynamics undergo bifurcations to
population oscillations that are also predicted by the mean-
field theory [13]. We have also provided a theoretical argu-
ment explaining the abrupt termination of the transient. The
escape from the transient state is driven by the noise gener-
ated by the network dynamics due to the randomness of the
connectivity and the finite size of the network. This argument
allows us to account for the exponential distribution of the
transient duration, observed in the simulations when the ini-
tial conditions of the network are changed.

Our simulations indicate that the duration of the transients
depends mostly on N and K through the ratio N/ K. However,
the periodic states reached after the long transients strongly
depend on K. When the number of connections per neuron is
large (K2 200 for the parameters investigated in this paper),
the state which is reached is a smeared cluster state with a
short period that is comparable to the interspike interval of
single neurons. In contrast, when K is small (K<< ~100) the
period of the asymptotic state increases exponentially with
the system size N. Interestingly, in these periodic states the
firing patterns of the neurons are very irregular on a short
time scale, which does not depend on the system size. Un-
derstanding the origin of these two qualitatively different re-
gimes and how the transition between them occurs as K is
varied remains a topic for future work. It should be noted
that periodic states with periods exponentially long in the
network size have been found in networks of binary neurons
with random asymmetric connectivity [33].

An important question is whether the stability of precise
spike time trajectories can be observed in real neuronal net-
works, in which many sources of noise are present. The fact
that perturbations on the order of 1/N destabilize such tra-
jectories seems to indicate that, with realistic levels of noise,
stable trajectories can be observed only in very small net-
works. Furthermore, we find that the transient duration for a
given initial condition varies strongly for different noise re-
alizations. For larger noise amplitudes, the periodic states
destabilize and the behavior is governed by the irregular dy-
namics, which can be either asynchronous or synchronous

PHYSICAL REVIEW E 79, 031909 (2009)

[13]. This suggests that the periodic solutions play no role
for the behavior of large noisy systems. For small networks
that exhibit a rich variety of periodic configurations one
might speculate whether the apparent coexistence of irregu-
lar and periodic dynamics is of relevance for information
processing purposes. We leave this issue as an open problem
for future research.

Chaos has been shown to exist in spatially structured net-
works [34,35]. In the present paper, we report that unstruc-
tured randomly connected integrate-and-fire networks of fi-
nite size can also exhibit chaotic states. We found that when
the synaptic delay is small and the decay time of the synaptic
currents is beyond some critical value, the dynamics have
one or several strictly positive Lyapunov exponents. Relying
on our numerical simulations for different values of the net-
work size, we conjecture that the maximum Lyapunov expo-
nent remains strictly positive also in the thermodynamic
limit, and therefore that the dynamics is also chaotic in that
limit. For the same parameters and finite systems we find that
the synchronized one-cluster state remains stable. Hence, al-
though we never observed the chaotic dynamics to collapse
onto periodic solutions, we cannot exclude this possibility in
finite systems. The nature of the relationship between the
chaoticity and the temporal correlations in the synaptic cur-
rents induced by the noninstantaneous decay of the synapses
remains to be determined.

Our results, as well as those of [22,26], concern networks
of inhibitory integrate-and-fire neurons with discontinuous
dynamics and with synaptic dynamics that are discontinuous
or have discontinuous derivatives. Therefore, one may won-
der whether similar behavior can be found in networks with
more realistic and smoother neuronal and synaptic dynamics.
Our preliminary results indicate that long transients exhibit-
ing irregular dynamics are also observed in networks of
Hodgkin-Huxley conductance-based inhibitory neurons (not
shown). A systematic study of the properties of these long
transients requires formidable computational power. We
leave this investigation for future work.

APPENDIX A: EVENT-DRIVEN MAP

Dynamics (1) can be mapped onto a discrete-time map,
which we demonstrate in the following for the case of delta
PSCs (see also [22,35]). First let us simplify Eq. (1) by using
the rescaled variables

-t ~ I.-Vi ~ D - J
[:—, Vi=—7 D:—’ J: ,
T Iexl - Vt T Iext - Vt
- ~ L=V,
= 1’ Vr — ext r
Iexl - VI
Thus the temporal evolution transforms into
. N7
Vi==Vi+ 222 80-11" ~D), Ve (1)
=1 Kom

(A1)

Let \7,-(n) denote the membrane potential of the ith neuron
and 5t§m)(n)=5—f+?§’"), 5[1(-’")(11) >0 denote the “waiting
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time” of a spike to induce a postsynaptic current, both im-
mediately after the nth event (firing or PSC induction). One
can easily infer from Eq. (A1) that the time interval needed
by the ith neuron to reach the firing threshold in the absence

of spikes is ,(n)=In V,(n). The first step is to find the mini-
mum of the time intervals, At(n)= mln{(St(m)(n) ot,(n)}. Now
there are two cases to be considered.

(i) PSC induction. Let the shortest time interval be
817 (n), which sets the integration time step of the map, i.e.,
At(n)= 5t/’)(n) By now including the effect of the next
spike, the network dynamics can be transformed into a dis-

crete map as follows:

Vin+1)= % L (A2a)
S (n+ 1) = 8" (n) - Ar(n). (AZb)

As a matter of course, 5t§‘”)(n) is removed from the stack.
(i) Firing. Let the shortest time interval be Ot (n). Now

the dynamics is given by an exponential relaxation or time

shift, respectively, and a new spike, ¢, is added to the system,

Vin+1)=7,, (A3a)

T 1) = L0 (A3b)
Vk(")

81" (n+1) = 81" (n) = Ar(n), (A3c)

&]((q) — 5 (A3d)

The g)rocess can be iterated by finding the minimum among
{5t(’" (n+1), t(n+1)} and so on. Therefore, Az(n) represents
the time interval between the nth an the (n+ 1)th spike; fol-
lowing the standard notation, it will be denoted with #;,(n).
On the other hand, Tig(n) denotes the time elapsed between
the (n+1)th spike and the previous spike emitted by the
same neuron.

APPENDIX B: LINEARIZED DYNAMICS
AND LYAPUNOV EXPONENT

For the following we assume that the membrane poten-
tials (measured at discrete time steps) of different neurons do
not coincide. Due to the random topology of the synaptic
matrix this is guaranteed, except for the trivial one-cluster
state where all neurons are initialized at the same value. We

denote infinitesimal perturbations of the potentials X7i by w;
and perturbations of 5t§-m) as 57';’”). Adopting the terminology

PHYSICAL REVIEW E 79, 031909 (2009)

of Appendix A the linearized dynamics is given as follows:
(1) PSC induction:

_ _ wi(n) ‘7;(”) »)
Wiln+1) = exp[At(n)] B exp[At(n)] 7" (n), (Bla)
87" (n+ 1) = 61" (n) - 57 (n). (B1b)

(ii) Firing:
win+1)=0, 6&77= (B2a)
Ty =) Vil o (B2b)
Vin)  Vi(n)?

S (n+ 1) = 57 (n) - ) (B2¢)

Vk(n)

For the calculation of Lyapunov exponents we iterate the
original as well as a set of linearized equations and reor-
thonormalize the perturbation vectors periodically using a
modified Gram-Schmidt algorithm (see [36] and references
therein).

APPENDIX C: MEAN-FIELD CALCULATION OF THE
DISTANCE BETWEEN UNCORRELATED STATES

When PSCs are delta functions, in the diffusion approxi-
mation, the distribution of membrane potentials in an asyn-
chronous network state is given by

2R V- 2 (Vi=mg)/ o
e
0 (V=po)log
Vo~ )2
x@@-%}xp(ﬁ)du, (1)
{0
where
1
Ry= (C2)

— ( f ,U«o)/ﬂ'o
v er exp(u?)[1 +erf(u)]

(V=) o
is the mean firing rate, puy=1.+JRy7 is the mean input to the

cell, and oy=\J?R,7/K. The distance between uncorrelated
states is

D= f dVdW|V - WIP(V)P(W), (C3)

where P(V) is the stationary distribution of membrane poten-
tials [Eq. (C1)].
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